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Abstract

A new method for robust estimation is introduced. The

presented algorithm seeks to unify adjustable per-iteration

speedup methods with an adaptive assumption regarding

the number of inliers. This is achieved by assuming a

prior distribution on the true number of inliers, and us-

ing Bayesian inference to adjust the speedup whenever a

best-so-far model estimate is found. Convincing results are

obtained for both synthetic and real cases of the robust

synchronisation of video pairs generated by independently

moving cameras.

1 Introduction

Many vision problems require the estimation of a model

from data contaminated with a significant proportion of out-

liers. Two classical methods for dealing with such problems

are the Least Median of Squares (LMedS) [8] and RANSAC

[5]. Both of these methods repeatedly draw upon small ran-

dom subsets of the data. For each subset, the model is es-

timated and assessed according to how well it fits the en-

tire data set. LMedS ranks an estimate by the median of

the error measurements describing how well the data fit the

model, whereas RANSAC uses the number of data clas-

sified as inliers, according to some noise distribution and

threshold.

The RANSAC approach has been enhanced in a variety

of ways. Some methods, such as MSAC [11], MLESAC

[12] and MAPSAC [10] use more sophisticated criteria to

assess each model, improving the probability that the best

is identified and returned upon termination. Other enhance-

ments have focused on efficiency, seeking to decrease the

execution time. These approaches range from the problem-

specific [4] to the general [3], and are particularly useful

since larger vision problems such as structure from motion

require many robust estimations.

Of particular relevence to this paper is Randomized

RANSAC [2], in which a model estimate is discarded if it

fails the Td,d test. This test chooses d data at random, and

determines if all are classified as inliers by the model esti-

mate. The average time for each iteration is reduced, yet

more iterations are required to compensate for the higher

probability that a ‘correct’ estimate is wrongly discarded.

Given an assumed number of inliers, this tradeoff can be

analysed in advance to find the choice for d that minimises

the total execution time. A lenient variation of this test is

used in [6], with a robust estimation strategy used to achieve

structure from motion in real time. All model estimates are

generated first, and the worst are progressively discarded as

more data are considered.

2 Accelerated Robust Estimation

The following notation is used. The unknown model

parameters to be estimated are denoted by the vector θ.

Both inliers and outliers are contained within the data set

M = {xi|i ∈ [1 . . . nx]}. A robust estimation process seeks

to both compute θ, and classify each xi as either an inlier or

outlier. On each iteration, a data subset of size c is randomly

chosen to compute an estimate of θ.

The termination condition for existing robust methods

is often derived from the probability of selecting a random

subset without any outliers. For an assumed number of in-

liers µ, this probability is denoted here as G(µ), and is ap-

proximated in [8] as (µn−1
x )c. It is noted in [2] that this is

incorrect since random subsets are chosen without a repeti-

tion of elements, and the correct expression is

G(µ) =
(nx − c)!µ!

(µ− c)!nx!
. (1)

Whichever expression is assumed, the probability of never

choosing an uncontaminated subset in η iterations is

pf = (1− G(µ))η . (2)
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Choosing an acceptably low probability of failure, say pf =
0.001, this expression can be rearranged to determine the

required number of iterations η.

Each iteration consists of randomly selecting data ele-

ments, estimating θ, and evaluating its quality using the

whole data set. Now consider the case where each itera-

tion is accelerated by the use of some process or test. The

Td,d test is one such example, as it accelerates the evalua-

tion step. A problem-specific process which accelerates the

estimation step for video synchronisation is given in the fol-

lowing section. In general, any such speedup process will

be adjustable, permitting faster iterations but also increasing

the probability that each will fail.

To permit a general analysis, it is assumed that the

speedup process is adjusted by varying a parameter ψ,

which can be considered analogous to d in the Td,d test. If

a small ψ value is chosen, each iteration will be faster, but

more will be required to ensure the robust algorithm will

fail with a probability no larger than pf . The objective is to

choose a value for ψ such that the robust algorithm can ter-

minate in the smallest possible time, balancing the tradeoff

between iteration speed and the probability that each itera-

tion will fail.

Two functions are of relevence here. The first, T (ψ, µ),
estimates the time required for a single iteration. The sec-

ond, P(ψ, µ), represents the probability that the iteration

will generate an acceptable estimate of θ, if the random sub-

set contains no outliers. For a given ψ, the probability of η

iterations failing is

pf = (1− G(µ)P(ψ, µ))η . (3)

Rearranging to solve for η, and multiplying by the expected

iteration time yields a total estimated execution time of

TEX(ψ, µ, pf ) = T (ψ, µ)

⌈

log(pf )

log(1− G(µ)P(ψ, µ))

⌉

.

(4)

The ⌈.⌉ (ceiling) operator is used since a partial iteration is

an impossibility. This operator and differing notation aside,

an approximation to (4) is used in [2] to choose the opti-

mal d for the Td,d test. If the assumed µ remains constant,

choosing ψ which minimises (4) is expected to result in the

best speedup.

Instead of a constant assumed number of inliers, many

implementations of RANSAC style algorithms use an adap-

tive approach. The number of inliers µ is initially set to

c, since for most problems any random subset will fit the

model it generates. When an estimate classifying more in-

liers is found, µ is updated, and the required number of it-

erations η is revised. A new method will now be described,

which seeks to combine such an adaptive assumption with

per-iteration speedups.

An update of µ may have a considerable effect on the ψ

which minimises (4). It is therefore appropriate to reevalu-

ate ψ whenever µ is updated. Defining the termination con-

dition in terms of the total number of iterations is no longer

appropriate. Since different iterations may have used dif-

ferent ψ values, the probability of failure is no longer given

by (3). Instead, it is necessary to maintain a history of the

values used for ψ, and the number of iterations that each

was used for. Assuming nψ different choices for ψ have

been used, with the tth choice denoted ψt and used for kt
iterations, the probability that all previous iterations failed

is given by

F(µ) =

nψ
∏

t=1

(1− G(µ)P(ψt, µ))kt . (5)

The algorithm terminates when F(µ) is smaller than pf .

Evaluating F is not necessary after every iteration. An ac-

cumulated probability of failure, denoted p̂f can be main-

tained instead. After an iteration when a best-so-far esti-

mate of θ is found, F(µ) is computed, and the result is

stored in p̂f . Otherwise, µ remains unchanged, so it is suf-

ficient to multiply p̂f by the probability that the previous

iteration failed.

Throughout much of the robust estimation µ will be an

under-estimate. This can adversely affect the choice of

value for ψ, particularly during the earlier iterations when

µ is low. To resolve this, µ can be considered only a lower

bound. Since the true number of inliers is unknown be-

fore termination, it is assumed to be an instance of the ran-

dom variable N , following a prior probability distribution

P (N = k). The choice of distribution is problem depen-

dent. For example, in the case of fundamental matrix esti-

mation, with point matches determined by correlation mea-

sures, it could be assumed that the probability of each match

being an inlier is constant. Consequently, P (N = k) will be

a binomial distribution. As the lower bound is given by µ, it

is also convenient to define an upper bound on N , denoted

nmax. For most problems this will be nx, but the following

section requires a different form.

Whenever µ is updated, a new ψ is chosen that seeks to

achieve the best speedup for the remaining iterations. De-

termining the expected time until termination is problem-

atic, since both µ and ψ may be revised on later iterations.

Instead, we model the remaining time until the termination

condition is reached for the true number of inliers, given

the distribution P (N = k), and assuming ψ will remain

unchanged for the remaining iterations. Assuming there are

k inliers in the data set, the probability that all previous it-

erations have failed is given by F(k). To achieve an overall

probability of failure pf , the remaining iterations must only

fail with probability

R(k) = min(1, pfF(k)−1) . (6)

The min(.) operator is necessary to ensure that R(k) does

not exceed 1.
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The expected remaining time can be computed by sum-

ming (4) for each number of inliers k in the constrained

range [µ, nmax], and scaling each summand by a probability

weight w(k). Each w(k) represents the conditional proba-

bility that there are truly k inliers, given the observed lower

bound µ and the history of ψ values used on previous it-

erations. If the observed µ is considered an instance of a

random variable N ′, then the choice for ψ is given by

ψ∗ = argmin
ψ

nmax
∑

k=µ

w(k) TEX(ψ, k,R(k)) ,

where w(k) = P (N = k|N ′ = µ) .

(7)

Once the termination condition is reached for a hypoth-

esised number of inliers k, R(k) will be 1. The corre-

sponding summand will be 0 and not affect the choice of

speedup. Choosing ψ in this manner may result in subopti-

mal speedups since the true number of inliers is modelled by

a distribution, though this is an unavoidable consequence of

uncertainty. Also, if the probability of failure is reached for

the true number of inliers without ever finding an accept-

able estimate, more iterations will follow since termination

is based on the lower bound. This is true of adaptive termi-

nation in general.

The probability weights w(k) can be determined using

Bayes’ theorem, and are given by

w(k) =
P (N ′ = µ|N = k)P (N = k)

∑nmax

j=µ P (N ′ = µ|N = j)P (N = j)
. (8)

The conditional probabilities P (N ′ = µ|N = k) describe

the probability of observing a lower bound of µ given the

history ofψ values and the number of past iterations, assum-

ing k inliers. The derivation of these is problem-specific,

and requires additional assumptions. If this is deemed in-

tractable, the weights may be modified to include an addi-

tional assumption that all previous iterations have failed. If

event S denotes success on any previous iteration, the prob-

ability weights for (7) are then given by

w(k) = P (N = k|N ′ = µ ∩ ¬S) . (9)

As above, these weights can be determined using Bayes’

theorem, but require few assumptions. Since it is assumed

all previous iterations have failed, P (¬S|N = k) is given

by F(k). Additionally, P (N ′ = µ|¬S ∩ N = k) is as-

sumed to be some constant value, independent of k, since

the assumption of prior failure means the number of inliers

had no effect on the observed µ. This leads to probability

weights given by

w(k) =
F(k)P (N = k)

∑nmax

j=µ F(j)P (N = j)
. (10)

Note that in equations (8) and (10), the range of the denom-

inator is restricted. This is due to the assumption that we

cannot observe a µ which is higher than the true number of

inliers.

This section has described a new process which com-

bines an adaptive estimate of the number of inliers with an

adaptive choice of speedup that seeks the optimal tradeoff

between the speed and reliability of the iterations. This

approach is termed RATSAC (Random Adaptive Tradeoff

Sample Consensus), and is summarised below.

Algorithmic Summary of RATSAC:

Choose small overall probability of failure pf
Number of inliers µ← c

Accumulated probability of failure p̂f ← 1
Compute ψ∗ as given by (7)

while p̂f > pf do

p̂f ← p̂f (1− G(µ)P(ψ∗, µ))
Randomly select c samples from {xi}
Compute θ and evaluate, according to ψ∗

if θ is the best so far then

Set µ to the number of classified inliers

p̂f ← F(µ) as given by (5)

Compute ψ∗ as given by (7)

end if

end while

Return the best θ and associated classifications

3 Video Synchronisation

Synchronisation is concerned with determining the tem-

poral relationship between two or more videos. For videos

recorded at constant frame rates, this relationship is linear.

If frame indices in two videos are denoted f and f ′, then

f ′ = a+ bf (11)

denotes the frame in the second video that was recorded at

the same time as f . The parameters (a, b) define the line of

synchrony, where b is a ratio of the cameras’ frame rates,

and a represents an offset in time. For known frame rates,

synchronisation only requires the estimation of a. This pa-

rameter is typically found by imposing spatial constraints

known to hold in the presence of synchrony. For exam-

ple, projections of a moving scene point should satisfy the

epipolar constraint in synchronous frames.

Feature based robust synchronisation algorithms tend to

operate by iterating over a range for a, performing a robust

estimation for each value. In [9], all moving feature points

from approximately synchronous frames (according to a hy-

pothesised a) are considered matches. In [1], matches con-

sist of entire 2D trajectories. This reduces the number of

matches, and therefore the number of iterations required. In
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Figure 1. Epipolar line pairs (solid) and the

result of a linear interpolation (dashed)

both these algorithms, the spatial relationship between cam-

eras is assumed to remain constant over time.

A histogram method for the synchronisation of indepen-

dently moving cameras is presented in [7]. This method

assumes that corresponding stationary scene points have

been observed in both videos, and can be used to define the

epipolar geometry between any pair of frames. Specifically,

Fi,j is the fundamental matrix relating frame i from the first

video, and frame j from the second. A moving scene point

projects to trajectories h and h′ in the two videos, such that

ph,i is the image location in frame i of the first video, and

p′
h′,j is the location in frame j of the second video.

A hypothesised value of the offset a can be assessed by

measuring the epipolar error associated with a pair of im-

age points in synchronous frames. This can be problem-

atic however, since the line of synchrony may not intersect

integer frame pairs. The solution proposed in [7] consists

of interpolating epipolar lines to enable the measurement

of epipolar errors for non-integer frame indices. Consider

frame pair (i, j) lying on the line of synchrony defined by

(a, b), where i is an integer, but j is not. Clearly p′
h′,j and

Fi,j are undefined, preventing the measurement of epipo-

lar errors. However, the two eipolar lines in frame i of the

first video, generated by the ‘closest’ to synchronous frames

from the second video are

l1 = Fi,⌊j⌋p
′
h′,⌊j⌋ l2 = Fi,⌊j⌋+1p

′
h′,⌊j⌋+1 , (12)

where ⌊.⌋ denotes the floor operator. Once computed, each

of these line vectors is normalised by a function N . This

function normalises a line vector such that the sum of the

squares of its first to elements is 1. One of the line vectors

is also negated if their difference in orientation is greater

than π. Once normalised, these line vectors can be linearly

interpolated, so as to approximate the location of an epipo-

lar line for the non-integer frame index j, given by

l̂ = (1 + ⌊j⌋ − j)N (l1) + (j − ⌊j⌋)N (l2) . (13)

Using this line, an epipolar error in frame i can now be mea-

sured, given by

d(ph,i, l̂) , (14)

where d(.) denotes the euclidean distance between a point

and a line. The histogram method in [7] relies on the fact

that rearranging (14) permits the search for frame pairs that

exhibit an epipolar error of exactly 0. Such pairs, termed

synchrony pairs, exist since the space of interpolated lines

between l1 and l2 is a bounded region in the image, as

shown in Fig. 1. To find synchrony pairs, consider choosing

an integer frame index i from the first video, and consecu-

tive integer frame indices (k, k+1) from the second. Image

points in the (k, k + 1) frame pair are used to generate the

line vectors l1 and l2 in frame i of the first video, by assum-

ing k = ⌊j⌋. If a j exists between k and k + 1, such that

the interpolated line l̂ exactly passes through ph,i, then the

frame index pair (i, j) is considered a synchrony pair.

Each synchrony pair found defines an estimate of the

frame offset a, and a histogram can be built from these val-

ues, with a tentative estimate of synchronisation then being

provided by the tallest histogram peak.

A search for synchrony pairs need not be exhaustive. An

accelerated search can be conducted by randomly selecting

just a small number of frames from first video. For each

chosen frame i, a search can be conducted across all con-

secutive frame pairs (k, k+1) from the second video. A re-

ciprocal search can then be performed by randomly choos-

ing a small number of frames from the second video. This

forms the basis for an accelerated robust estimation, where

the speedup parameter ψ controls how many frames are ran-

domly chosen in each video.

A difficult case is considered here, where m and m′ tra-

jectories of moving scene points are tracked in the first and

second videos respectively. It is assumed that no correlation

information is available, so the set of matches consists of

all pairs of trajectories. Some matches will preclude others,

since two trajectories with overlapping frame ranges in one

video cannot both be matched with the same trajectory in

the other video. A single iteration of the robust estimation

consists of choosing a trajectory pair at random, perform-

ing an accelerated search for synchrony pairs, refining the

initial estimate given by the histogram peak, and evaluating

the resulting synchronisation estimate against all matches.

Before the RATSAC approach to choosing speedup val-

ues can be employed, it is necessary to model both the

time and probability functions T (ψ, µ), and P(ψ, µ), as de-

scribed in section 2.

Trajectories h and h′ in the first and second videos have

lengths measured in frames denoted vh and v′h′ . If ψ con-

trols the proportion of frames chosen for the synchrony pair

search, then this search takes time

TSEARCH(ψ) = ψ(2E[vhv
′
h′ ]− E[vh]− E[v′h′ ]) . (15)

The expected trajectory length expressionsE[.] can be com-

puted in advance by examining each match in turn. Note

that this expression is quadratic, and reflects the expense of
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a synchrony pair search. The iteration time T (ψ, µ) is given

as

T (ψ, µ) = TSEARCH(ψ) + TREM(ψ, µ) , (16)

where TREM represents the time for the portion of the iter-

ation which is not directly accelerated by the choice of ψ.

The portion of the estimation step not affected by ψ con-

sists of resetting the histogram to 0, incrementing the cells,

locating the peak, and refining the offset a by minimising

the average of squared interpolated epipolar errors for the

chosen trajectory pair. To speed up the refinement, epipolar

errors are only measured for a coarse uniform sampling of

frames from each video, and the minimisation, performed

by Levenberg-Marquardt, terminates after no more than 15
iterations. The resulting line of synchrony defines a range

of frames in each trajectory for which epipolar errors are

measurable. The estimate is discarded if these ranges are

too small, or if the the average of these errors fails a thresh-

old test. For iterations passing these tests, the synchrony

estimate is assessed by evaluating the average squared error

for every match. Initially, this is done using a coarse sam-

pling in the same fashion as used for the minimisation, and

matches are classified as inliers or outliers accordingly. If

the costs and classifications imply the estimate is the best

found so far, a full evaluation follows. An expression for

TREM (ommited here) can therefore be derived with as-

sumptions regarding how many synchrony pairs are found,

how many iterations pass the range and measurability tests,

and how many measurable residuals are available. Addi-

tionally, to determine the average time for evaluation, it is

assumed that the cost used to rank an estimate is the same

for both a full and coarse sampling.

The functionP(ψ, µ) is far simpler, and has been derived

empirically using the observation that at ψ of 0.1 yields a

high probability of success for simple point and camera mo-

tions. Accordingly,

P(ψ, µ) = ψ0.1 . (17)

Note that a ψ of 0 implies guaranteed failure, and a ψ of 1
implies guaranteed success for a correct match.

The robust cost, either full or coarse, is obtained by

measuring the average squared epipolar residuals associ-

ated with each match according to the synchrony estimate.

Matches can then be classified as inliers or outliers by a

simple threshold test. Classification must occur in ascend-

ing order of the associated costs, to ensure the best matches

are kept and that no conflicts occur. If the sum of squared

residuals for a given match is denoted sh,h′ , and the num-

ber of measurable residuals contributing to the sum iswh,h′ ,

and the matches are partitioned into inlier and outlier sets

denoted MI and MO, the robust cost is

SIZE(MI)

∑

(h,h′)∈MI
sh,h′

∑

(h,h′)∈MI
wh,h′

+ SIZE(MO)t , (18)

where t is the threshold. Note this cost guarantees that, in a

fashion similar to MSAC, two estimates with the same num-

ber of associated inliers are ranked according to the average

cost associated with those inliers. After the robust estima-

tion, this cost can be reduced using Levenberg-Marquardt to

refine the synchronisation estimate, and possibly reclassify

the matches.

All that remains is to define the discrete probability dis-

tributions to be used in selecting ψ. The distribution for

the number of inliers P (N = k) is assumed to be uni-

form in the range of 1 to nmax, since all trajectory pairings

are given as matches. The upper bound nmax can not be

given by nx, since matches may conflict. Determining the

maximum sized set of non-conflicting matches is an NP-

complete problem. Instead, an initial value of min(m,m′)
is used, and updated later if it is found to be too low.

Such a choice is appropriate for long ‘unbroken’ trajecto-

ries. Estimating the conditional probabilities for the proba-

bility weights is also complex, due to the fact that matches

may conflict, so the expression for the assumption of prior

failure (10) is used.

4 Results

Using RATSAC for the synchronisation of moving cam-

eras has been tested with both synthetic and real examples.

In the synthetic case, three temporal configurations are con-

sidered, with each test being repeated 1000 times for ran-

dom stationary and linearly moving scene points. All mov-

ing points are visible in every frame, with video lengths

denoted n and n′. There are 10 moving point trajectories

for each video, but only 5 are in common. This admits

a worst case scenario of finding no correct matches, and

10 non-conflicting incorrect matches from a possible set of

95. Point locations are perturbed by Gaussian noise, such

that the average squared distance to the true location is 1
pixel. The required probability of failure pf was chosen to

be 0.001.

For each test, RATSAC provides an initial estimate of

the frame offset and inlier/outlier classification. These are

then refined by a minimisation of the robust cost function.

Table 1 shows the results of the classifications. Note that

every test correctly classified the 5 correct matches as in-

liers. Furthermore, no test wrongly classified more than 1
incorrect match. In a sense, none of these 3000 tests ac-

tually failed. The maximum error in frame offset for all

tests was 0.55, synchronising the videos to within almost

one half of a frame. The median errors in frame offset for

each setup were 0.022, 0.035, and 0.032, indicating a highly

accurate level of synchronisation. The higher incidence of

incorrect matches in the second setup is most likely due to

the smaller overlap in time. An incorrect match is more

likely to have low errors across a short range of frames than
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a longer one. The quality of these results also validates the

choice for function P , by demonstrating an acceptably low

probability of failure.

The initial ψ values chosen for each setup were 0.01,

0.01, and 0.02, indicating that fast iterations are given pref-

erence over slower more reliable ones. The resulting ex-

ecution times of the robust estimation (without the subse-

quent minimisation) were compared with cases where ψ

was unconditionally set to 1, which represents exhaustive

synchrony pair searches, with no speedup employed. By

comparison, The percentage of time saved by using an adap-

tive ψ for each of the three setups is 85%, 88%, and 68%.

This reduction demonstrates the clear benefit of using ran-

dom sampling to find a synchronisation estimate with his-

togram methods.

RATSAC was also tested 1000 times on a video pair

recorded by independently moving handheld cameras. The

footage captured shows three purple balls, bouncing repeat-

edly. The ball locations were determined using colour and

gradient measures, and combined to form 2D trajectories

with simple distance constraints. Due to occasional track-

ing failure and occlusions, there are 22 trajectories in the

first video, and 19 in the second, yielding a total of 418
possible matches. The initial ψ chosen was 0.042, again

indicating a preference for many fast iterations.

The synchronisation achieved by RATSAC and a min-

imisation of the robust cost function is satisfactory for this

video pair. When compared to a manual estimate, the me-

dian error in frame offset across the 1000 tests was 0.12.

This is well within the range of visual error for a manual

estimate, and suggests sub-frame synchronisation has been

achieved. Match classification was also accurate, with 19
correct matches being identified in every test. According to

the manual synchronisation estimate, this is the true num-

ber of inliers. Additionally, no tests wrongly classified an

incorrect match as an inlier.

Over 1000 tests, the execution time was compared to that

of tests where ψ was unconditionally set to 1. The percent-

age of time saved by using an adaptive approach was 18%.

This is a significantly lower saving than that achieved in the

synthetic tests, and is most likely due to the shorter trajec-

tory sizes. Shorter trajectories yield faster synchrony pair

searches, so evaluation will occupy a greater proportion of

the iteration time.

An illustration of the synchronisation achieved by RAT-

SAC is shown in Fig. 2, depicting cropped regions of frames

from the two videos, displayed with their relative position

determined by synchrony. Reconstructions of the 3D ball

trajectories are shown from new views in Fig. 3. These

reconstructions are obtained by assuming that, for each

match, the path of the ball follows a Bezier curve model pa-

rameterised by time. Each curve can then be estimated from

image correspondances by minimising reprojection error.

5 Conclusions

Section 2 describes a new robust estimation strategy, in-

corporating an adaptive termination condition with a prob-

ability based decision process to select ideal speedup pa-

rameters. The underlying premise is general enough to be

applied to a variety of problems, and can be used in con-

juncton with various robust cost measures. Additionally, a

histogram based synchronisation method for moving cam-

eras has been extended to the robust case, and demonstrates

a high rate of success for identifying matches, for both real

and synthetic test cases, even without the prior use of corre-

lation measures.
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Setup Percentage of tests with classified matches

n n′ a b 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 99.5 0.5

80 100 42.3 1.1875 100 98.3 1.7

20 100 10.63 4.9375 100 99.7 0.3

Table 1. Correct and incorrect inliers classified by RATSAC followed by a minimisation of the robust

cost function.

Figure 2. Regions of frames from video 1 (top) and video 2 (bottom), with horizontal position deter-

mined by synchrony.

Figure 3. 3D Ball trajectories, projected to virtual (non-existent) camera locations.
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